Microsoft учит GPT-4 автономному использованию Android

Самые главные новости в Телеграм-канале CryptoMoon, присоединяйтесь!👇

Cryptomoon Telegram


Заставить ChatGPT работать автономно в пределах операционной системы оказалось трудной задачей по многим причинам, но команда, состоящая из ученых из Microsoft Research и Пекинского университета, возможно, нашла секретный соус.

Команда провела исследование, чтобы определить, почему модели больших языков (LLM) искусственного интеллекта (ИИ), такие как GPT-4, не справляются с задачами, требующими манипулирования операционной системой.

Современные системы, такие как ChatGPT, работающие на GPT-4, устанавливают эталон для генеративных задач, таких как составление электронного письма или написание стихотворения. Но заставить их действовать в качестве агентов в общей среде представляет собой серьезную проблему.

Традиционно модели ИИ обучаются исследовать посредством обучения с подкреплением в виртуальной среде. Разработчики ИИ использовали модифицированные версии популярных видеоигр, таких как Super Mario Bros. и Minecraft, чтобы «обучить» модели таким концепциям, как самостоятельное исследование и поиск целей.

Но операционные системы — это совершенно другая площадка для моделей ИИ. Для агентов выполнение функций внутри ОС часто представляет собой мультимодальную задачу, требующую обмена информацией между различными компонентами, программами и приложениями.

Вообще говоря, подход к обучению с подкреплением требует проб и ошибок. Однако любой, кто слишком много раз ввел свой пароль неправильно или забыл, какие ярлыки работают и в каких приложениях знают, данные могут легко быть потеряны при использовании такого подхода в среде операционной системы.

Исследователи работали с различными LLM, включая Llama2 70B с открытым исходным кодом Meta и GPT-3.5 и GPT-4 OpenAI. Согласно исследованию, ни один из них не показал особенно хороших результатов.

Согласно документу команды, это связано с тем, что в настоящее время задача превышает возможности сегодняшнего ИИ:

«Во-первых, пространство действий обширно и динамично. … Во-вторых, реальные задачи часто требуют взаимодействия между приложениями, что требует от агентов LLM дальновидного планирования. В-третьих, агентам необходимо найти оптимальные решения, соответствующие ограничениям пользователей, таким как проблемы безопасности и предпочтения».

Чтобы найти способ преодолеть эти проблемы, исследователям сначала нужно было понять, почему LLM не смогли манипулировать операционными системами, в то время как некоторые модели ИИ были способны на сверхчеловеческие подвиги, такие как победа над всеми желающими в шахматы и го.

Команда разработала новую среду обучения под названием AndroidArena, которая позволила магистрантам изучить среду, аналогичную ОС Android. Затем, после создания задач тестирования и системы эталонного тестирования, они определили отсутствие четырех ключевых способностей: понимание, рассуждение, исследование и размышление.

Хотя объем работы был специально предназначен для выявления проблемы, в ходе исследовательского процесса команда фактически нашла «простой» метод, позволяющий повысить точность модели на 27%.

По сути, команда предоставила модели автоматизированную информацию о количестве попыток, которые она предприняла ранее, и о том, что она пробовала во время этих попыток. Это решило проблему отсутствия «рефлексии» за счет встраивания памяти в подсказки, используемые для ее запуска.

Это направление исследований может оказаться важным в поисках лучшего ИИ-помощника.

Смотрите также

2024-02-12 23:45